PERFORMANCE CHARTS

Altitude Conversion Chart ... 9-1
Takeoff Performance ... 9-2
Climb Performance .. 9-3
Cruise Performance - True Airspeed .. 9-4
Cruise Performance - Range ... 9-5
Stalling Speed vs Angle of Bank .. 9-6
Stalling Speed vs Weight ... 9-7
Glide Performance ... 9-8
Landing Performance ... 9-9
Power Setting Table ... 9-10

WARNING

Performance information derived by extrapolation beyond the limits shown on the charts should not be used for flight planning purposes.
ALTITUDE CONVERSION CHART

This chart should be used to determine density altitude from existing temperature and pressure altitude conditions for use with performance charts.

TEMPERATURE - °F

DENSITY ALTITUDE - FT.

STD. TEMP.

16000 FT. PRESSURE ALTITUDE

14000
12000
10000
8000
6000
4000
2000
SL

PERFORMANCE CHARTS
ISSUED: JULY 13, 1973
TAKEOFF PERFORMANCE
PAVED LEVEL DRY RUNWAY
GROSS WT. 2650 LBS.
FULL POWER BEFORE BRAKE RELEASE
ZERO WIND
EXTRAPOLATION OF CHART ABOVE 7000 FT. IS INVALID

NOTE: SEE SECTION 7 FOR EFFECTS OF AIR CONDITIONING INSTALLATION ON PERFORMANCE.
CLimb Performance

Power - Full Throttle
Gear and Flaps Retracted
Gross Wt. 2650 Lbs.
Mixture-Lean Per Lycoming Instructions
100 MPH CAS

Rate of Climb (FT./MIN.)

Density Altitude (FT.)

Note: See Section 7 for Effects of Air Conditioning Installation on Performance.
CRUISE PERFORMANCE - TRUE AIRSPEED

GROSS WT. 2650 LBS.
MIXTURE-LEAN PER LYCOMING INSTRUCTIONS

TRUE AIRSPEED (MPH)

DENSITY ALTITUDE (FT.)

NOTE: SEE SECTION 7 FOR EFFECTS OF AIR CONDITIONING INSTALLATION ON PERFORMANCE.
CRUISE PERFORMANCE - RANGE

GROSS WT. 2650 LBS.
48 GAL. FUEL
BEST ECONOMY
CLEAN CONFIGURATION
MIXTURE - LEAN PER LYCOMING INSTRUCTIONS

PERCENT RATED POWER	APPROX. GPH
75 | 10.15
65 | 9.16
55 | 8.0

NOTE: SEE SECTION 7 FOR EFFECTS OF AIR CONDITIONING INSTALLATION ON PERFORMANCE.
GLIDE PERFORMANCE

GROSS WT. 2650 LBS.
105 MPH
PROP WINDMILLING
0° FLAPS - GEAR UP*
NO WIND

*IF EQUIPPED WITH BACKUP GEAR EXTENDER SYSTEM
HOLD OR LATCH EMERGENCY GEAR LEVER IN OVERRIDE
UP POSITION.

PERFORMANCE CHARTS
REVISED: JANUARY 31, 1987
Power Setting Table - Lycoming Model 10-360-C Series, 200 HP Engine

<table>
<thead>
<tr>
<th>Press. Alt Feet</th>
<th>Std. Alt Temp °F</th>
<th>110 HP - 55% Rated RPM AND MAN. PRESS. 2100</th>
<th>110 HP - 55% Rated RPM AND MAN. PRESS. 2400</th>
<th>130 HP - 65% Rated RPM AND MAN. PRESS. 2100</th>
<th>130 HP - 65% Rated RPM AND MAN. PRESS. 2400</th>
<th>150 HP - 75% Rated RPM AND MAN. PRESS. 2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>59</td>
<td>22.9</td>
<td>20.4</td>
<td>25.9</td>
<td>22.9</td>
<td>25.5</td>
</tr>
<tr>
<td>1,000</td>
<td>55</td>
<td>22.7</td>
<td>20.2</td>
<td>25.6</td>
<td>22.7</td>
<td>25.2</td>
</tr>
<tr>
<td>2,000</td>
<td>52</td>
<td>22.4</td>
<td>20.0</td>
<td>25.4</td>
<td>22.5</td>
<td>25.0</td>
</tr>
<tr>
<td>3,000</td>
<td>48</td>
<td>22.2</td>
<td>19.8</td>
<td>25.1</td>
<td>22.2</td>
<td>24.7</td>
</tr>
<tr>
<td>4,000</td>
<td>45</td>
<td>21.9</td>
<td>19.5</td>
<td>24.8</td>
<td>22.0</td>
<td>24.4</td>
</tr>
<tr>
<td>5,000</td>
<td>41</td>
<td>21.7</td>
<td>19.3</td>
<td>FT</td>
<td>21.7</td>
<td>FT</td>
</tr>
<tr>
<td>6,000</td>
<td>38</td>
<td>21.4</td>
<td>19.1</td>
<td>--</td>
<td>21.5</td>
<td>--</td>
</tr>
<tr>
<td>7,000</td>
<td>34</td>
<td>21.2</td>
<td>18.9</td>
<td>--</td>
<td>21.3</td>
<td>--</td>
</tr>
<tr>
<td>8,000</td>
<td>31</td>
<td>21.0</td>
<td>18.7</td>
<td>--</td>
<td>21.0</td>
<td>--</td>
</tr>
<tr>
<td>9,000</td>
<td>27</td>
<td>FT</td>
<td>18.5</td>
<td>--</td>
<td>FT</td>
<td>--</td>
</tr>
<tr>
<td>10,000</td>
<td>23</td>
<td>--</td>
<td>18.3</td>
<td>--</td>
<td>--</td>
<td>10,000</td>
</tr>
<tr>
<td>11,000</td>
<td>19</td>
<td>--</td>
<td>18.1</td>
<td>--</td>
<td>--</td>
<td>11,000</td>
</tr>
<tr>
<td>12,000</td>
<td>16</td>
<td>--</td>
<td>17.8</td>
<td>--</td>
<td>--</td>
<td>12,000</td>
</tr>
<tr>
<td>13,000</td>
<td>12</td>
<td>--</td>
<td>17.6</td>
<td>--</td>
<td>--</td>
<td>13,000</td>
</tr>
<tr>
<td>14,000</td>
<td>9</td>
<td>--</td>
<td>FT</td>
<td>--</td>
<td>--</td>
<td>14,000</td>
</tr>
</tbody>
</table>

To maintain constant power, correct manifold pressure approximately 0.16" Hg for each 10°F variation in inlet air temperature from standard altitude temperature. Add manifold pressure for air temperatures above standard; subtract for temperatures below standard.