TABLE OF CONTENTS

SECTION 4 (cont)

<table>
<thead>
<tr>
<th>Paragraph No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21</td>
<td>Before Takeoff</td>
<td>4-19</td>
</tr>
<tr>
<td>4.23</td>
<td>Takeoff</td>
<td>4-20</td>
</tr>
<tr>
<td>4.25</td>
<td>Climb</td>
<td>4-21</td>
</tr>
<tr>
<td>4.27</td>
<td>Cruising</td>
<td>4-21</td>
</tr>
<tr>
<td>4.29</td>
<td>Descent</td>
<td>4-22</td>
</tr>
<tr>
<td>4.31</td>
<td>Approach And Landing</td>
<td>4-23</td>
</tr>
<tr>
<td>4.33</td>
<td>Stopping Engine</td>
<td>4-24</td>
</tr>
<tr>
<td>4.35</td>
<td>Parking</td>
<td>4-24</td>
</tr>
<tr>
<td>4.37</td>
<td>Stalls</td>
<td>4-25</td>
</tr>
<tr>
<td>4.39</td>
<td>Turbulent Air Operation</td>
<td>4-25</td>
</tr>
<tr>
<td>4.41</td>
<td>Weight And Balance</td>
<td>4-25</td>
</tr>
</tbody>
</table>
The electric fuel pump should be turned OFF after starting or during warm-up to make sure that the engine driven pump is operating. Prior to takeoff the electric pump should be turned ON again to prevent loss of power during takeoff should the engine driven pump fail. Check both oil temperature and oil pressure. The temperature may be low for some time if the engine is being run for the first time of the day. The engine is warm enough for takeoff when the throttle can be opened without the engine faltering.

4.21 BEFORE TAKEOFF

All aspects of each particular takeoff should be considered prior to executing the takeoff procedure.

Insure that the master switch is ON. Check and set all of the flight instruments as required. Check the fuel selector to make sure it is on the proper tank (fullest). Turn ON the electric fuel pump and check the engine gauges. The carburetor heat should be in the OFF position.

All seat backs should be erect and the seat belts and shoulder harness should be fastened. Pull test the locking restraint feature of the shoulder harness inertia reel. Fasten the seat belts snugly around the empty seats.

The mixture should be set, and the primer should be checked to insure that it is locked.

NOTE

The mixture should be set FULL RICH, but a minimum amount of leaning is permitted for smooth engine operation when taking off at high elevation.

Exercise and set the flaps and trim tab. Insure proper flight control movement and response. All doors should be properly secured and latched. On air conditioned models, the air conditioner must be OFF to insure normal takeoff performance.
4.23 TAKEOFF (See charts in Section 5)

The normal takeoff technique is conventional. The tab should be set slightly aft of neutral, with the exact setting determined by the loading of the airplane. Allow the airplane to accelerate to 45 to 55 KIAS depending on the weight of the aircraft and ease back on the control wheel to rotate to climb attitude. Premature raising of the nose or raising it to an excessive angle will result in a delayed takeoff. After takeoff, let the airplane accelerate to the desired climb speed by lowering the nose slightly.

Takeoffs are normally made with flaps up; however, for short field takeoffs and for takeoffs under difficult conditions, such as deep grass or a soft surface, total distances can be reduced appreciably by lowering the flaps to 25° and rotating at lower airspeed.

A short field takeoff is accomplished without flaps by applying full power before brake release; lift off at 40-52 KIAS (depending on weight) and accelerate to and maintain 44-57 KIAS (depending on weight) past obstacle and climb out at 79 KIAS.

A short field takeoff with an obstacle clearance is accomplished by first lowering the flaps to 25°. Apply full power before brake release and accelerate to 40-52 KIAS (depending on weight) and rotate. Accelerate to and maintain 44-57 KIAS (depending on weight) until obstacle clearance is attained. After the obstacle has been cleared, accelerate to 79 KIAS and then slowly retract the flaps.

Takeoff from a soft field with an obstacle clearance requires the use of 25° flaps. Accelerate the airplane and lift the nose gear off as soon as possible and lift off at the lowest possible airspeed. Accelerate just above the ground to 52 KIAS to climb past obstacle clearance height. Continue climbing while accelerating to the best rate of climb speed, 79 KIAS and slowly retract the flaps.

For a soft field takeoff without an obstacle to clear, extend the flaps 25°, accelerate the airplane and lift the nose gear off as soon as possible. Lift off at the lowest possible airspeed. Accelerate just above the ground to the best rate of climb speed, 79 KIAS, and retract the flaps while climbing out.
4.25 CLIMB

The best rate of climb at gross weight will be obtained at 79 KIAS. The best angle of climb may be obtained at 63 KIAS. At lighter than gross weight these speeds are reduced somewhat. For climbing en route, a speed of 87 KIAS is recommended. This will produce better forward speed and increased visibility over the nose during the climb.

When reaching the desired altitude, the electric fuel pump may be turned off.

4.27 CRUISING

The cruising efficiency and speed is determined by many factors, including power setting, altitude, temperature, loading and equipment installed in the airplane.

The normal cruising power is 55% to 75% of the rated horsepower of the engine. Airspeeds which may be obtained at various altitudes and power settings can be determined from the performance graphs provided by Section 5.

Use of the mixture control in cruising flight significantly reduces fuel consumption while reducing lead deposits when alternate fuels are used. The mixture should be full rich when operating above 75% power, and leaned during cruising operation when 75% power or less is being used.

To lean the mixture for best power cruise performance place the mixture control full forward and set the throttle slightly below (approximately 35 RPM) the desired cruise power setting and lean the mixture to peak RPM. Adjust the throttle, if necessary, for final RPM setting.

For Best Economy cruise, a simplified leaning procedure which consistently allows accurate achievement of best engine efficiency has been developed. Best Economy Cruise performance is obtained with the throttle fully open. To obtain a desired cruise power setting, set the throttle and mixture control full forward, taking care not to exceed the engine speed limitation, then begin leaning the mixture. The RPM will increase slightly but will then begin to decrease. Continue leaning until the desired cruise engine RPM is reached. This will provide best fuel economy and maximum miles per gallon for a given power setting. See following CAUTION when using this procedure.
CAUTION

Prolonged operation at powers above 75% with a leaned mixture can result in engine damage. While establishing Best Economy Cruise Mixture, below 6,000 feet, care must be taken not to remain in the range above 75% power more than 15 seconds while leaning. Above 6,000 feet the engine is incapable of generating more than 75%.

Always remember that the electric fuel pump should be turned ON before switching tanks, and should be left on for a short period thereafter. In order to keep the airplane in best lateral trim during cruising flight, the fuel should be used alternately from each tank. It is recommended that one tank be used for one hour after takeoff, then the other tank be used for two hours; then return to the first tank, which will have approximately one and one half hours of fuel remaining if the tanks were full at takeoff. The second tank will contain approximately one half hour of fuel. Do not run tanks completely dry in flight. The electric fuel pump should be normally OFF so that any malfunction of the engine driven fuel pump is immediately apparent. If signs of fuel starvation should occur at any time during flight, fuel exhaustion should be suspected, at which time the fuel selector should be immediately positioned to the other tank and the electric fuel pump switched to the ON position.

4.29 DESCENT

NORMAL

To achieve the performance on Figure 5-31, the power on descent must be used. The throttle should be set for 2500 RPM, mixture full rich and maintain an airspeed of 126 KIAS. In case carburetor ice is encountered apply full carburetor heat.

POWER OFF

If a prolonged power off descent is to be made, apply full carburetor heat prior to power reduction if icing conditions are suspected. Throttle should be retarded and mixture control leaned as required. Power response should be verified approximately every 30 seconds by partially opening and then closing the throttle (clearing the engine). When leveling off, enrichen mixture, set power as required and select carburetor heat off unless carburetor icing conditions are suspected.
4.31 APPROACH AND LANDING (See charts in Section 5)

Check to insure the fuel selector is on the proper (fullest) tank and that the seat backs are erect. The seat belts and shoulder harnesses should be fastened and the inertia reel checked.

Turn the electric fuel pump ON and turn the air conditioner OFF. The mixture should be set in the full RICH position.

The airplane should be trimmed to an initial-approach speed of about 70 KIAS with a final-approach speed of 63 KIAS with flaps extended to 40°. The flaps can be lowered at speeds up to 103 KIAS, if desired.

The mixture control should be kept in full RICH position to insure maximum acceleration if it should be necessary to open the throttle again. Carburetor heat should not be applied unless there is an indication of carburetor icing, since the use of carburetor heat causes a reduction in power which may be critical in case of a go-around. Full throttle operation with carburetor heat on can cause detonation.

The amount of flap used during landings and the speed of the aircraft at contact with the runway should be varied according to the landing surface and conditions of wind and airplane loading. It is generally good practice to contact the ground at the minimum possible safe speed consistent with existing conditions.

Normally, the best technique for short and slow landings is to use full flap and enough power to maintain the desired airspeed and approach flight path. Mixture should be full RICH, fuel on the fullest tank, and electric fuel pump ON. Reduce the speed during the flareout and contact the ground close to the stalling speed. After ground contact hold the nose wheel off as long as possible. As the airplane slows down, gently lower the nose and apply the brakes. Braking is most effective when flaps are raised and back pressure is applied to the control wheel, putting most of the aircraft weight on the main wheels. In high wind conditions, particularly in strong cross-winds, it may be desirable to approach the ground at higher than normal speeds with partial or no flaps.
4.33 STOPPING ENGINE

At the pilot’s discretion, the flaps should be raised and the electric fuel pump turned OFF. The air conditioner and radios should be turned OFF, and the engine stopped by disengaging the mixture control lock and pulling the mixture control back to idle cut-off. The throttle should be left full aft to avoid engine vibration while stopping. Then the magneto and master switches must be turned OFF.

NOTE

When alternate fuels are used, the engine should be run up to 1200 RPM for one minute prior to shutdown to clean out any unburned fuel.

NOTE

The flaps must be placed in the UP position for the flap step to support weight. Passengers should be cautioned accordingly.

4.35 PARKING

If necessary, the airplane should be moved on the ground with the aid of the nose wheel tow bar provided with each airplane and secured behind the rear seats. The aileron and stabilator controls should be secured by looping the safety belt through the control wheel and pulling it snug. The flaps are locked when in the UP position and should be left retracted.

Tie downs can be secured to rings provided under each wing and to the tail skid. The rudder is held in position by its connections to the nose wheel steering and normally does not have to be secured.
4.37 STALLS

The stall characteristics are conventional. An approaching stall is indicated by a stall warning horn which is activated between five and ten KTS above stall speed. Mild airframe buffeting and gentle pitching may also precede the stall.

The gross weight stalling speed with power off and full flaps is 44 KIAS. With the flaps up this speed is increased. Loss of altitude during stalls varies from 100 to 275 feet, depending on configuration and power.

NOTE

The stall warning system is inoperative with the master switch OFF.

During preflight, the stall warning system should be checked by turning the master switch ON, lifting the detector and checking to determine if the horn is actuated. The master switch should be returned to the OFF position after the check is complete.

4.39 TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups which may occur as a result of the turbulence or of distractions caused by the conditions. (See Subsection 2.3)

4.41 WEIGHT AND BALANCE

It is the responsibility of the owner and pilot to determine that the airplane remains within the allowable weight vs. center of gravity envelope while in flight.

For weight and balance data, refer to Section 6 (Weight and Balance).